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Abstract

The energy balance equation for elastoplastic solids includes heat source terms that
govern the conversion of some of the plastic work into heat. The remainder contributes to
the stored energy of cold work due to the creation of crystal defects. This paper is

concerned with the fraction b of the rate of plastic work converted into heating. We
examine the status of the common assumption that b is a constant with regard to the
thermodynamic foundations of thermoplasticity and experiments. A general internal-

variable theory is introduced and restricted to abide by the second law of thermodynamics.
Experimentally motivated assumptions reduce this theory to a special model of classical
thermoplasticity. The only part of the internal energy not determined from the isothermal

response is the stored energy of cold work, a function only of the internal variables. We
show that this function can be inferred from stress and temperature data from a single
adiabatic straining experiment. Experimental data from dynamic Kolsky-bar tests at

various strain rates yield a unique stored energy function. Its knowledge is crucial for the
determination of the thermomechanical response in non-isothermal processes. Such a
prediction agrees well with results from dynamic tests at di�erent rates. In these
experiments, b is found to depend strongly on both strain and strain rate for various

engineering materials. The model is successful in predicting this dependence. Requiring b to
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be constant is thus an approximation of dubious validity. # 2000 Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A complete description of thermomechanical processes for elastoplastic solids at
the continuum level involves appropriate statements of the ®rst and second laws
of thermodynamics, in addition to momentum balance laws and constitutive
relations. The statement of energy balance (the ®rst law of thermodynamics) may
be viewed as an equation governing the evolution of the temperature ®eld. As
such, it involves heat source terms representing heating due to thermomechanical
coupling and inelastic dissipation. One of these terms describes heating through
recoverable (elastic) deformations. Another term governs the conversion of some
part of the non-recoverable plastic work into heat. The remaining part of the
plastic work contributes to the storage of internal energy through the creation and
rearrangement of crystal imperfections, especially dislocations, but also point
defects, stacking faults and twins. This is known as the stored energy of cold
work.

This paper is concerned with the fraction, commonly denoted by b, of the rate
of plastic work converted into heating. It has been customary in the mechanics
literature to assume that b is a constant, typically chosen between 0.8 and 1 (e.g.,
Belytschko et al., 1991; Clifton et al., 1984; Kapoor and Nemat-Nasser, 1998;
Needleman and Tvergaard, 1995; Simo and Miehe, 1992; Wright and Ockendon,
1992; Zhou et al., 1996). This practice is often justi®ed by citing the early
pioneering work of G. I. Taylor and his coworkers (Farren and Taylor, 1925;
Taylor and Quinney, 1937), who performed the ®rst experiments investigating this
issue. Since then, numerous attempts have been made to measure b, resulting in a
wealth of experimental information on the stored energy of cold work. This
information is primarily obtained by means of quasistatic experiments and
features alarming amounts of scatter in data for nominally identical materials. A
detailed review of the literature on cold work is provided by Bever et al. (1973)
and various experimental techniques to measure it have been compared by
Hodowany et al. (1998).

More recently, Mason et al. (1993) made the ®rst attempt to measure b via fully
dynamic experiments performed over a wide range of strains and strain rates. The
main contribution of this study was to demonstrate experimentally that b can
have a substantial dependence on strain and strain rate. This motivated an
extensive experimental investigation using a Kolsky pressure bar to measure the
stress±strain response and a high-speed infrared detector to measure the
temperature during deformation (Hodowany et al., 1998). They present systematic
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and conclusive experimental evidence of the e�ect of strain and strain rate on the
partition of plastic work into stored energy and heat. The results show dramatic
variations of b with both strain and strain rate for engineering materials such as
aluminum alloys or titanium.

This observation suggests that assuming b to be a constant in theoretical and
numerical studies of coupled thermomechanical processes may result in
inaccuracies in predicted strain, stress and temperature ®elds, especially in the
presence of high-rate adiabatic deformations. In particular, thermoplastic
instabilities associated with dynamic shear banding (Zhou et al., 1996), dynamic
necking, penetration (Camacho and Ortiz, 1997), and high-speed machining
(Marusich and Ortiz, 1995) are accompanied by localized strains and strain rates,
and substantial heat generation due to thermoplastic coupling, and are thus
expected to be in¯uenced by the form of b.

Other problems of practical interest that are a�ected by this issue address the
temperature rise at the tips of dynamically propagating cracks (Zehnder and
Rosakis, 1991), pore collapse during dynamic consolidation (Tong and
Ravichandran, 1995), and hot spot initiation during mechanical loading of
explosives (Dienes, 1996; Howe et al., 1985).

This investigation examines the theoretical foundations underlying the partition
of plastic work into heat and stored energy. We seek a rational thermodynamic
basis for a version of the energy balance equation that is often taken for granted
in the literature and in which b plays a central role.

Section 2 contains a brief summary of the fundamentals of continuum
thermodynamics. In Section 3 we describe an internal-variable formulation of
classical, rate-dependent thermoplasticity theory. We enforce the restrictions
imposed on this general theory by the second law of thermodynamics. The ®rst
law of thermodynamics, or energy balance equation, is thereby brought into a
form that allows identi®cation of the thermoelastic and inelastic contributions to
heat generation. For simplicity the development is one-dimensional; this su�ces
for a treatment of the Kolsky pressure bar experiments described by Hodowany et
al. (1998).

The theory is specialized further in Sections 4 and 5 by means of experimentally
motivated assumptions. These concern the dependence of the speci®c heat and the
stress response function on the internal variables and the elastic strain. The main
consequence of these assumptions is that the internal energy decouples into a sum
of three functions of one variable. These are identi®ed as the elastic energy, which
depends solely on elastic strain, the thermal energy, which is a function of
temperature, and the stored energy of cold work, which depends only on the
internal variable. A similar decomposition holds for the entropy. Physically
speaking, the stored energy of cold work is due to the generation and
rearrangement of defects during plastic deformation; it depends on the extent of
the latter through the internal variable. The inelastic heating term of the energy
equation reduces to the excess of the rate of plastic work over the rate of change
of the stored energy of cold work. The ratio b of the inelastic heating over the
plastic work rate is thus determined by the speci®c form of the stored energy of
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cold work and the evolution laws governing plastic ¯ow. As a result, b depends
on the history of the thermomechanical process and is not a constant in general.

Evolution laws for the plastic strain and the internal variable are discussed in
Section 6 with emphasis on a special class of rate-dependent thermoplastic
constitutive models.

In Section 7, we focus on adiabatic homogeneous processes with a view towards
modeling the Kolsky pressure bar experiments described by Hodowany et al.
(1998). For such processes we ®nd that the temperature and stress histories are
determined by the strain history as solutions of a system of ordinary di�erential
equations. However, this is possible only if the stored energy of cold work is a
known function of the internal variable. This function should be recognized as
playing a constitutive role; without it the model is incomplete and inapplicable to
any non-isothermal process involving plastic ¯ow.

We demonstrate that the stored energy of cold work can be obtained from a
single adiabatic experimental record of the stress and temperature history,
provided that the isothermal response and thermal softening characteristics of the
material are known. Using experimental data from Hodowany et al. (1998), we
measure the stored energy of cold work for an essentially rate-insensitive
aluminum alloy and highly rate-sensitive titanium. For each material, experiments
at di�erent strain rates produce the same stored energy of cold work as a function
of the internal variable, in a fashion consistent with the theory.

Once the dependence of the stored energy of cold work on plastic strain is
established, the complete adiabatic stress and temperature response of these
materials is predicted for tests at various levels of strain rate. The results are in
excellent agreement with experimental data found in Hodowany et al. (1998).

A detailed study of the fraction b is undertaken in Section 8. For constant-rate
adiabatic processes, our approach yields a semi-analytical expression for b as a
function of plastic strain, with a parametric dependence on plastic strain rate. For
aluminum we ®nd that b has a strong dependence on strain (but is essentially
independent of the strain rate). In the case of titanium we ®nd a somewhat less
dramatic dependence on strain, but a substantial dependence on strain rate. Both
observations show very good agreement with values of b measured experimentally
by Hodowany et al. (1998).

For a general, not necessarily adiabatic, thermomechanical process, b is a
history-dependent quantity. Requiring it to be a constant is at best an
approximation, and is not supported by experimental evidence. A complete
constitutive model for thermoplasticity should include a free energy function
accounting for the stored energy of cold work (e.g., Chaboche, 1993; Bodner and
Lindenfeld, 1995), instead of ad hoc assumptions about b. An expression for the
stored energy of cold work may be obtained in various ways. One possibility is to
extract it from dynamic experiments as we show in this paper. Alternatively, one
might deduce it from a micromechanical model that accounts for the generation
and evolution of crystal defects, and keeps track of the energy stored in their
con®guration. Examples of that approach are studies by Aravas et al. (1990) and
Zehnder (1990).
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2. General thermodynamic considerations

We recall some of the fundamentals of continuum thermodynamics: see e.g.,
Truesdell (1984) and Bowen (1989) for general treatments; Carlson (1972) for
thermoelasticity; Lubliner (1990) and Antman (1995) for thermoplasticity theories.
A thermomechanical process for a solid body can be described by a vector
displacement ®eld u(x, t ) and a scalar absolute temperature ®eld y(x, t ). Here x is
the position vector of a particle in a ®xed reference con®guration of the body and
t is time; we employ a referential (Lagrangian) description.

The thermomechanical process is to conform to momentum balance and to the
®rst and second laws of thermodynamics. These balance laws involve the
following ®elds: Piola±Kirchho� stress tensor ®eld sss, internal energy per unit
volume e, entropy per unit volume Z, absolute temperature y > 0, heat ¯ux vector q
and heat supply per unit volume1 r. The local version of the ®rst law of
thermodynamics requires that for every thermomechanical process, the above
®elds satisfy the energy balance equation

sss � r Çu� r � q� r � _e; �1�

the term sss � r Çu is the stress power. The following local version of the second law
of thermodynamics is known in continuum mechanics as the Clausius±Duhem
inequality:

_Zÿ r � �q=y� ÿ rr0: �2�

After use of (1), the second law (2) assumes the alternative form

�y_Zÿ _e� sss � r Çu� � 1

y
q � ryr0: �3�

The expression within brackets above is called the internal dissipation per unit
volume, de®ned as

d � sss � r Çuÿ _e� y_Z: �4�

This de®nition divides the entropy production into the sum of internally
dissipative and heat-conductive parts.

The second law can also be stated in terms of the Helmholtz free energy per
unit volume c=eÿyZ as follows:

ÿ _cÿ Z_y� sss � r Çu� 1

y
q � ryr0: �5�

The internal dissipation d satis®es

1 These correspond to speci®c ®elds (per unit mass) multiplied by the constant reference mass density.
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d � sss � r Çuÿ _cÿ Z_y: �6�
By using (1), (6) and the de®nition of c, the energy balance equation can now be
written as

d� r � q� r � y_Z: �7�
Constitutive laws relating the above ®elds are the subject of the next section.

3. Constitutive description in terms of internal variables

In this paper we develop a one-dimensional constitutive model in the context of
classical thermoplasticity theory. All ®elds have a one-dimensional spatial
dependence on the reference coordinate x. Thermomechanical processes are
described by a scalar axial displacement u=u(x, t ) and a temperature y=y(x, t ).
The scalars of s, e=ux and q denote axial stress, strain2 and heat ¯ux,
respectively, while Hy is determined by yx; subscripts indicate partial
di�erentiation with respect to the corresponding variable. We employ an internal-
variable formulation. This involves introduction of two additional constitutive
variables, the plastic strain e p and the internal variable or hardening variable3 x,
which are to obey suitable evolution laws. The constitutive laws for s, e, Z, q and
c, as well as the evolution laws for the rates _ep and _x, are assumed to be
expressible via functions of the same array of variables, namely (e, e p, x, y, yx), as
suggested by the notion of equipresence (Truesdell and Toupin, 1960). Here
however, we immediately con®ne attention to the special case of classical
plasticity, in which dependence on e and e p appears only through their di�erence
eÿe p. The elastic strain is accordingly de®ned as

ee � eÿ ep �8�
so that the usual additive decomposition e=e e+e p holds. Speci®cally, we assume
that for every thermomechanical process of the body

s � ŝ�ee, x, y, yx�,

e � ê�ee, x, y, yx�,

Z � Ẑ�ee, x, y, yx�,

c � ĉ�ee, x, y, yx�,

2 Alternatively, in one-dimensional shear u is the transverse displacement, s and e are shear stress and

strain, respectively.
3 A generalization involving multiple internal variables is straightforward.
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q � q̂�ee, x, y, yx�,

_ep � P̂�ee, x, y, yx�,

_x � X̂�ee, x, y, yx�, �9�

the right-hand-sides being constitutive response functions, assumed to be as
smooth as desired. The last two equations represent evolution laws for the plastic
strain and the internal variable. The formulation so far follows well-established
internal-variable theories (Coleman and Gurtin, 1967; Rice, 1970, 1971; Lubliner
1972, 1990; Antman, 1995); it leads to a rate-dependent thermoplasticity theory as
will become evident in Section 6.

We restrict the constitutive description by requiring that the second law (5) hold
for every thermodynamic process. This standard procedure of constitutive
reduction is due to Coleman and Noll (1963); for its implications on plasticity see
Lubliner (1972, 1990) and Chaboche (1993). Using the chain rule and (8) we ®nd

_c � ĉee _eÿ ĉee _ep � ĉx
_x� ĉy

_y� ĉyx
_yx, �10�

where subscripts indicate partial di�erentiation (e.g., ĉee � @ ĉ�ee, x, y, yx�=@ee).
Substituting the above into (5) and using the evolution laws in (9) for _ep and _x, we
obtain

�ŝ�ee, x, y, yx� ÿ ĉee �ee, x, y, yx��_eÿ �Ẑ�ee, x, y, yx� � ĉy�ee, x, y,

yx��_yÿ ĉyx�ee, x, y, yx�_yx � �ĉee �ee, x, y, yx�P̂�ee, x, y, yx� ÿ ĉx�ee, x,

y, yx�X̂�ee, x, y, yx�� � 1

y
q̂�ee, x, y, yx�yxr0:

�11�

By requiring that (11) should hold for any thermodynamic process, one concludes
that the terms multiplying _e, _y and _yx in the above expression must vanish. This
implies that

c � ĉ�ee, x, y�,

s � ŝ�ee, x, y� � ĉee �ee, x, y�,

Z � Ẑ�ee, x, y� � ÿĉy�ee, x, y�: �12�

In particular, ĉ, ŝ and Ẑ are independent of yx, whereas qÃ, PÃ and X̂ may depend
on the entire array of variables (Chaboche, 1993). The second law now reduces to
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ĉee �ee, x, y�P̂�ee, x, y, yx� ÿ ĉx�ee, x, y�X̂�ee, x, y, yx� � 1

y
q̂�ee, x, y,

yx�yxr0:

�13�

In view of (12), the internal dissipation4 in (6) is given by

d � s_ep ÿ ĉx
_x: �14�

After use of (14) and the last of (12), energy balance (7) takes the form

qx � r� s_ep ÿ ĉx
_x � y_Z � ÿy _̂cy:

By utilizing the chain rule, rearranging the above yields:

qx � r� _Q
e � _Q

p � c_y, �15�
where

_Q
e � yĉeey�ee, x, y�_ee � yŝy�ee, x, y�_ee,

_Q
p � s_ep ÿ �ĉx�ee, x, y� ÿ yĉxy�ee, x, y��_x,

c � ĉ�ee, x, y� � ÿyĉyy�ee, x, y�: �16�
Here c is the speci®c heat5 _Q

e
is the heating due to thermoelastic e�ects and _Q

p

represents the inelastic contribution to the heating. The ®rst term in the expression
for _Q

p
is the rate of plastic work _W

p � s_ep: At this point, we are in a position to
de®ne b as the fraction of the plastic work rate W

. p converted into heating _Q
p
, i.e.,

b � _Q
p
= _W

p
: �17�

Upon inspection of (16) and use of the evolution laws for _ep and _x, it becomes
evident that b depends in general on the entire list of variables appearing in (9).
As a result, for a speci®c thermomechanical process, b is a history-dependent
quantity. As we show in the rest of the paper, forcing it to be a constant is an
assumption of an approximate nature that is not supported by experimental
evidence.

4. Restrictions on the speci®c heat and the stress response function

We introduce specializing assumptions on the dependence of the speci®c heat cÃ

4 One shows from (13) that dr0 if the evolution laws are independent of yx.
5 More precisely, the speci®c heat at constant strain and internal variable, times the mass density.
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and the stress response function ŝ on the variables e e, x and y. We then deduce
representations of the internal energy, Helmholtz free energy and entropy that
follow from these.

A number of investigators have recognized the possibility that cold work may
alter the speci®c heat by changing the modes of atomic vibrations through
generation of crystal defects. To investigate this, they measured the speci®c heat of
both annealed and heavily plastically deformed samples at temperature ranges well
below the annealing temperature, i.e., the lowest temperature at which stored
energy is released. Di�erences in speci®c heat were never more than 1% and often
fell below the sensitivity of the recording technique. For an extensive discussion
and references see Bever et al. (1973, Section 1.3.4).

Within our theory, the measure of permanent plastic deformation (or cold
work) is the internal variable x. Accordingly, we assume that the speci®c heat is
independent of x and invoke the third of (16) to infer

c � ĉ�ee, y��)ĉyyx�ee, x, y� � 0: �18�

Granted enough smoothness, this implies that ĉxyy=0, so that ĉxyy is linear in y:

ĉx�ee, x, y� � yf�ee, x� � g�ee, x� �19�

for some functions f and g of two variables.
In addition, we assume that for purely elastic processes (for which _ep � _x � 0),

the relation between stress and elastic strain does not depend on the amount of
cold work or the number of dislocations accumulated through past deformation.
For a linear elastic response this implies that the elastic moduli are independent of
plastic deformation. This assumption is known to be quite accurate for metals. In
the present formulation, recalling the second of (12), we assume that the stress
response function ŝ is independent of x, namely,

ŝx�ee, x, y� � ĉeex�ee, x, y� � 0: �20�

In conjunction with (19) this gives ĉxee � yfee � gee � 0: Since this holds for
arbitrary y, it dictates that fee � gee � 0; (19) thus reduces to

ĉx�ee, x, y� � yf�x� � g�x�: �21�

Let �Z�x� and E
-
(x ) be such that �Z 0�x� � ÿf�x� and E

- '(x )=g(x ) (primes indicate
di�erentiation for functions of one variable). Integrating (21), we deduce a
representation for ĉ that also restricts Ẑ, ŝ and ê � ĉ� yẐ in view of (12):

ĉ�ee, x, y� � Ĉ�ee, y� ÿ y�Z�x� � �E�x�,

Ẑ�ee, x, y� � ÿĈy�ee, y� � �Z�x�,
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ê�ee, x, y� � Ê�ee, y� � �E�x�,

ŝ�ee, y� � Ĉee �ee, y�: �22�
Here we set Ê�ee, y� � Ĉ�ee, y� ÿ yĈy�ee, y�:

We conclude that if the speci®c heat cÃ and the stress response function ŝ are
independent of the internal variable x, the dependence of the internal energy eÃ and
entropy Ẑ on x occurs additively through functions E

-
(x ) and �Z�x� and separately

from their dependence on (e e, y ). The converse is clearly true as well. We identify
E
-
(x ) as the stored energy of cold work and �Z�x� as the entropy of cold work.

Lubliner (1972) obtains essentially the same representation from similar
assumptions. Decompositions similar to (22) are sometimes taken for granted
(e.g., Chaboche, 1993; Bodner and Lindenfeld, 1995). In the present setting, (22)
follows from assumptions on the behavior of functions directly measurable by
experiment, namely, cÃ and ŝ:

Under (22), the energy balance equation (15) takes an especially interesting
form. Substituting (22) into (16) we obtain for the inelastic heating

_Q
p � s_ep ÿ �E

0�x�_x � _W
p ÿ _�E: �23�

This is considerably simpler than its prior version (16) and has a transparent
physical interpretation: the inelastic heating equals the di�erence of the plastic work
rate s_ep � _W

p
and the rate of change of the internal energy of cold work _�E �

�E
0�x�_x:
Substitution of (22) into (16) for the thermoelastic heating yields

_Q
e � yĈeey�ee, y�_ee � yŝy�ee, y�_ee � yM�ee, y�_ee, �24�

where M�ee, y� � Ãsy�ee, y� is the stress-temperature coe�cient. Eq. (24) has a form
associated with purely thermoelastic response of the material and does not involve
the internal variable x. Observe the decoupling of inelastic e�ects from
thermoelastic ones in (23) and (24) in comparison to (16).

The version of energy balance (15) appropriate under the present assumptions is

qx � r� s_ep ÿ �E
0�x�_x� yM�ee, y�_ee � ĉ�ee, y�_y: �25�

After use of (22) in (13) we also record the corresponding version of the second
law:

s_ep ÿ �E
0�x�_x� y�Z 0�x�_x� 1

y
qyxr0: �26�

5. Further restrictions on the constitutive law

At this point we follow common practice and specialize the model further: we
assume that the speci®c heat is independent of the elastic strain e e, so that
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c � ĉ�y�: �27�

This is almost invariably assumed in the literature. Accordingly, in view of (22)
and (16), Ĉeeyy � 0, so that after integration we conclude that Ĉ�ee, y� �
C�y� ÿ y~Z�ee� � ~E�ee� in terms of suitable functions of one variable. As a result,
(22) reduces to

ĉ�ee, x, y� � C�y� ÿ y�~Z�ee� � �Z�x�� � ~E�ee� � �E�x�,

Ẑ�ee, x, y� � ÿC 0�y� � ~Z�ee� � �Z�x�,

ê�ee, x, y� � E�y� � ~E�ee� � �E�x�,

ŝ�ee, y� � ~E
0�ee� � yM�ee�, M�ee� � ÿ~Z 0�ee�: �28�

Here E(y )=C(y )ÿyC '(y ). The entropy and internal energy each decompose
additively into three single-variable functions of y, e e and x, respectively. In
particular, E(y ) is the thermal energy, EÄ(e e) and ~Z�ee� are the elastic energy and
entropy, E

-
(x ) and �Z�x� are the stored energy and entropy of cold work, respectively.

Under assumption (27), the stress response function in the fourth of (28) is linear
in y. The stress-temperature coe�cient M�ee� � ÿ~Z 0�ee� depends only on elastic
strain.

Further restrictions can now be introduced. Assuming a linear thermoelastic
stress response, one specializes (28) so that EÄ0(e e)=m=const. and ÿ~Z 0�ee� �
M � const:; here m > 0 and M are the elastic modulus and the stress-temperature
coe�cient, respectively. The thermal expansion coe�cient is a=ÿM/m. If the
reference con®guration is chosen to be stress-free at a reference temperature y0,
the last of (28) specializes to

ŝ�ee, y� � m�ee ÿ a�yÿ y0��: �29�

In addition, one often assumes a constant speci®c heat cÃ(y )=c = const.; this
determines C(y )=ÿcy log(y/y0) up to an inessential linear function6 of y. In view
of the assumptions leading to (29), one easily infers that (28) reduces to

ĉ�ee, x, y� � ÿcy log�y=y0� � m�ee2=2ÿ �yÿ y0�aee� � � �E�x� ÿ y�Z�x��,

Ẑ�ee, x, y� � c� log�y=y0� � 1� � maee � �Z�x�,

ê�ee, x, y� � cy� m�ee2=2� y0aee� � �E�x�,

6 Which does not a�ect any of the ®eld questions.
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ŝ�ee, y� � m�ee ÿ a�yÿ y0��: �30�
Energy balance (25) takes the form

qx � r� s_ep ÿ �E
0�x�_xÿ may_ee � c_y: �31�

For completeness we also specify the heat ¯ux q. We adopt the simplest possible
Fourier heat-conduction law: qÃ(e e, x, y, yx)=kyx, where k> 0 is a constant heat
conductivity coe�cient. The energy equation (31) then reduces to an
inhomogeneous heat equation:

c_yÿ kyxx � s_ep ÿ �E
0�x�_xÿ may_ee � r: �32�

In this equation, _Q
p� s_epÿ �E

0�x�_x is the inelastic heating, _W
p � s_ep is the plastic

work rate and _Q
e � ÿmay_ee is the thermoelastic heating. In terms of these

quantities and b de®ned in (17), the energy equation becomes

c_yÿ kyxx � b _W
p � _Q

e � r: �33�
This frequently employed form does not explicitly involve the stored energy of
cold work E

-
, about which little information is available. Instead, it is customary

to assume that b is a material constant7 with 0.8 R b R 1. This assumption
furnishes a way for the temperature ®eld to be calculated, but is subject to
criticism on both theoretical and experimental grounds, as discussed in Sections 7
and 8.

In the above equations, the rates _x and _ep abide by evolution laws [the last two
relations in (9)] that are made explicit in the next section. The only functions that
remain to be speci®ed are the stored energy E

-
and entropy �Z of cold work. The

latter does not enter the energy equation. The determination of the stored energy
of cold work E

-
from experiments is taken up in Section 7.

6. Connection with rate-dependent thermoplasticity

In this section we specify evolution laws that connect the theory developed above
to standard semi-empirical thermoplastic models; see Meyers (1994, Chap. 13).

Suppose that the stress response function s � ŝ�ee, y� is invertible for ®xed y, so
that ee� ŝÿ1�s, y�; this is the case for (29). Assume also that the evolution laws for
e p and x in (9) do not depend on yx. They can be written in the form

_ep � P�s, x, y�, _x � X�s, x, y�: �34�
We now specialize (34) further by assuming the following properties:

7 For example, Belytschko et al. (1991), Kapoor and Nemat-Nasser (1998), Clifton et al. (1984), Simo

and Miehe (1992), Wright and Ockendon (1992), and Zhou et al. (1996).
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(i) the functions P(s, x, y ), X(s, x, y ) are continuous and piecewise-smooth;
(ii) there exists a smooth, positive yield-stress function t(x, y ) > 0, such that;

X�s, x, y�
�� 0 for j s jRt�x, y�,
> 0 for j s j> t�x, y�: �35�

(iii) the internal variable x is identi®ed as accumulated plastic strain, namely;

_x �j _ep j, P�s, x, y� � sign�s�X�s, x, y�: �36�
(iv) the yield stress exhibits thermal softening, i.e., decreases with increasing
temperature;

@

@y
t�x, y� < 0:

(v) the yield stress does not decrease with increasing permanent deformation at
a ®xed temperature (no strain softening).

@

@x
t�x, y�r0:

Assumptions (ii) and (iii) imply that s_ep > 0 whenever _ep 6� 0: In the sequel we
restrict attention to plastic ¯ow under monotonic loading with s > t > 0, so that
_ep � _x > 0: Then P(s, x, y )=x(s, x, y ) in view of (iii). Under suitable initial
conditions we then have for all times

x � ep: �37�
Consider next the following speci®c example for X(s, x, y ). Let

hxi �
�
x for x > 0,
0 for xR0:

Let H(x ) be a smooth, monotone-increasing function such that:

H 0 > 0, H�0� � 0: �38�
After recalling (35) we specify X(s, x, y ) as follows:

X�s, x, y� � H

�� j s j
t�x, y� ÿ 1

��
: �39�

This is known as Perzyna's overstress model (Perzyna, 1966). For monotonic
loading, in view of (37), inversion of (39) furnishes

s � t�ep, y��1�H ÿ1�_ep��: �40�
Thus, during plastic ¯ow the stress coincides with a speci®c function of plastic
strain, temperature and plastic strain rate, called the ¯ow stress. Suppose
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t�ep, y� � s0�ep�f�yÿ y0�, h�_ep� � �1�H ÿ1�_ep��, �41�
where y0 is the reference temperature, s0 is a non-decreasing function and f is a
decreasing function with f(0)=1. Then the ¯ow stress in (40) becomes:

s � s0�ep�f�yÿ y0�h�_ep�: �42�
This special type of dependence of the ¯ow stress on plastic strain, temperature
and plastic strain rate is commonly assumed on the basis of empirical arguments
(e.g., Johnson et al., 1983; Klopp et al., 1985; Zerilli and Armstrong, 1987).

The factor s0(e
p) embodies strain hardening. It is measured from a quasistatic

test at constant temperature y0. Requirement (iv) ensures that ¯ow stress decreases
with increasing temperature as observed in experiments. The thermal softening
factor f(yÿy0) can be obtained from a series of isothermal tests at di�erent
constant temperatures and very low strain rates, _epR10ÿ3 sÿ1: The increasing
dependence of ¯ow stress on strain rate _ep is a consequence of (38) and the last of
(41). The strain-rate hardening factor h�_ep� is obtained from the dependence of the
initial yield stress (at e p=0) on _ep: This is measured from a series of dynamic
experiments at di�erent strain rates. The product

S�ep, _ep� � s0�ep�h�_ep� �43�
is the dynamic isothermal ¯ow stress. For a description of experimentally
motivated models of the form (42), see Meyers (1994, Chap. 13).

7. Adiabatic thermomechanical processes

We start by considering the conditions prevailing in the Kolsky pressure bar
experiments described by Hodowany et al. (1998). Consistent with the classical
treatment of these uniaxial compression experiments, deformations are idealized as
homogeneous, so that ex=0. Due to the high strain rates and short duration of the
experiments, heat loss through conduction, convection, or radiation is neglected in
comparison to thermoplastic heating; accordingly we set q=r = 0 in the energy
equation (31). This also implies that yx=0 and yxx=0 in (31) and (32). We thus
assume the process to be adiabatic and homogeneous. The strain history e=e(t ) of
the specimen is viewed as given; the strain rate _e > 0 is approximated as constant.

Under these circumstances, energy balance (31), the evolution law (39) together
with (37) and (29) yield a non-linear system of di�erential equations for the
histories y(t ) and x(t )=e p(t ) for a given strain history e(t ):

_x � X�s, x, y�,

_y � �1=c��sÿ �E
0�x��X�s, x, y� ÿ �ma=c�y�_eÿ X�s, x, y�� where

s � m��eÿ x� ÿ a�yÿ y0��:
�44�
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In view of assumptions (i)±(iv) on X Ð in particular (39) Ð when the third
equation is substituted into the ®rst two, the right-hand-sides are continuous and
piecewise-smooth functions of x, y and t; explicit dependence on t is through the
given function e(t ). The standard theory of systems of ordinary di�erential
equations then guarantees a unique solution for y(t ) and x(t ), hence, for s(t ),
subject to the initial conditions

y�0� � y0, x�0� � 0:

In addition to the material parameters m, c, a, and the speci®c choice of X(s, x, y )
described in (39)±(42), the stored energy of cold work E

-
(x ) must be speci®ed in

order to determine the stress and temperature history for an adiabatic
homogeneous process. Observe that the entropy of cold work �Z�x� appearing in
(30) does not enter (44).

We now consider an approximate version of system (44). We neglect the
thermoelastic heating _Q

e � ÿmay_ee compared to the thermoplastic heating8 _Q
p
:

One way to e�ect this is to set a=09. Alternatively, one may neglect the elastic
strain rate _ee � _eÿ _ep in comparison to _ep: This assumption is in good agreement
with experiments; see Hodowany et al. (1998) for details. As a result, in what
follows, we set _ep � _e, choose t= 0 to correspond to initial yield, and regard the
plastic strain history

ep�t� � x�t� �45�

as given. We also de®ne the adiabatic temperature rise

W�t� � y�t� ÿ y0: �46�

In view of (45), this reduces the energy balance [the second of (44)] to the form

c _W � s_ep ÿ �E
0�ep�_ep � _Q

p
, �47�

from which thermoelastic e�ects are absent due to the assumption just made. A
substitution of the ¯ow-stress expression (42) and (43) into (47) for s furnishes a
®rst-order di�erential equation for the temperature-rise history:

_W � �1=c��S�ep, _ep� f�W� ÿ �E
0�ep��_ep: �48�

For a constant-rate process, the solution of this equation expresses the adiabatic
temperature rise as a function �W�ep, _ep� of e p with a parametric dependence on _ep:
After this is obtained, the stress is determined by the strain and temperature rise
from (42) and (43) as

8 This approximation is not valid for up to short times after the onset of yielding, but improves very

rapidly as the plastic strain rate soon dominates over the elastic one.
9 This is appropriate for shear in isotropic materials with linear thermoelastic response.
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s � �s�ep, _ep� � S�ep, _ep� f� �W�ep, _ep��: �49�

7.1. Experimental determination of the stored energy of cold work

We now demonstrate that the stored energy of cold work E
-
can be measured

from the adiabatic experiments described by Hodowany et al. (1998). This is the
only part of the internal energy e that remains unknown in (30) and (32). As
observed above, speci®cation of E

-
is required in order to determine the response

to any thermomechanical process.
Suppose that during a Kolsky-bar test [viewed as an adiabatic homogeneous

process at a prescribed constant strain rate _ep; see (45)] the stress and temperature
rise are measured as functions �s�ep, _ep� and �W�ep, _ep�: Then integration of (47)
immediately yields

�E�ep� �
�ep

0

�s�e, _ep�deÿ c �W�ep, _ep�: �50�

Fig. 1. Adiabatic temperature rise W � �W�ep� vs plastic strain e p for rate-insensitive 2024-T351

aluminum. Dashed and/or dotted lines: experimental measurements at three di�erent strain rates. Solid

line: theoretical prediction from Eq. (55).
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Here we have chosen E
-
(0)=0 without loss of generality. This equation relates the

adiabatic stress �s�ep, _ep� and the adiabatic temperature rise �W�ep, _ep� to the internal
energy of cold work E

-
(e p). The ®rst term on the right-hand-side of (50) is the

plastic work, that is, the area under the stress-versus-plastic-strain curve extracted
from the Kolsky-bar data. The temperature in the second term is directly
measured by high-speed infrared detectors during each experiment; see Hodowany
et al. (1998) for details.

Both �s and �W are rate-dependent. However, their combination on the right-
hand-side of (50) should yield the same value of E

-
at a given strain when

evaluated using data from experiments at di�erent rates, since the stored energy of
cold work cannot depend on plastic strain rate according to the present model.

We turn to the experimental veri®cation of this conclusion. We consider ®rst a
2024-T351 aluminum alloy. This material is essentially strain-rate-insensitive; see
Hodowany et al. (1998) for details. Fig. 1 displays temperature rise versus plastic
strain measured from adiabatic experiments conducted at three di�erent strain
rates. The temperature rise was essentially the same in all three tests. This is due

Fig. 2. Stress s vs plastic strain e p for rate-insensitive 2024-T351 aluminum. Dashed line: experimental

measurement of the isothermal response s=s0(e
p) at the reference temperature y0=293 K and

_ep � 10ÿ3 sÿ1: Dash±dotted line: experimental adiabatic response s � �s�ep� at _ep � 3� 103 sÿ1: Solid

line: theoretical prediction of the adiabatic response from Eq. (55).
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to the rate independence of the material, as concluded by a prediction based on
our constitutive model in Section 7.2 below; see (55). Measurements of stress
versus plastic strain are shown in Fig. 2. The isothermal response (dashed line)
was measured at the reference temperature y0=293 K at a low strain rate _ep �
10ÿ3 sÿ1: The adiabatic stress response in high-rate experiments was essentially
independent of the strain rate. Results are shown from a single test at _ep �
3� 103 sÿ1 (dash±dotted line). Evaluation of E

-
(e p) from (50) using the data of

Figs. 1 and 2 is shown in Fig. 3. The various experiments, each of which spans
di�erent but overlapping ranges of plastic strain, produce a single curve for E

-
(e p)

for aluminum 2024-T351.
Similar experiments were performed for a highly rate-sensitive a-titanium. In

this case, the measured adiabatic temperature rise and stress versus plastic strain
were found to be strongly rate-sensitive and are shown as dotted curves in Figs. 4
and 5, respectively. However, when stress and temperature data from two di�erent
experiments at strain rates, _ep � 1sÿ1 and 3 � 103 sÿ1, were substituted into (50), a
single curve resulted for E

-
(e p), displayed in Fig. 6.

The prediction of a single curve for the stored energy of cold work using
experimental data from tests at di�erent strain rates, provides con®dence in the

Fig. 3. Stored energy of cold work E
-
(e p) vs plastic strain e p for aluminum 2024-T351; calculated from

Eq. (50) using the experimental data for W � �W�ep� and s � �s�ep� from Figs. 1 and 2.
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present model. The adiabatic measurements of stress and temperature rise found
in Hodowany et al. (1998), together with (50), furnish a straightforward method
for the evaluation of E

-
(e p). The rate independence of the stored energy of cold

work implies that a single adiabatic experiment of the above type su�ces for its
measurement 10.

7.2. Prediction of the adiabatic thermomechanical response

After the stored energy of cold work E
-
(e p) is determined from experiments, the

model at hand can predict the stress and temperature rise for any adiabatic
straining processes using isothermal constitutive information. To that e�ect,
suppose that the isothermal dynamic ¯ow stress S�ep, _ep� in (43) is measured from

Fig. 4. Adiabatic temperature rise W � �W�ep, _ep� vs plastic strain e p for rate-sensitive a-titanium. Dotted

lines: experimental measurements at _ep � 1sÿ1 and 3 � 103 sÿ1. Solid line: theoretical prediction from

Eq. (53) for _ep � 1sÿ1 and 3 � 103 sÿ1, 105 sÿ1.

10 This is the case for monotonic uniaxial loading, but probably not for more complex processes,

where a stored energy depending on multiple internal variables should be considered. Bodner and

Lindenfeld (1995) show that a multi-variable model for the stored energy accounts for its variation in

quasistatic cyclic experiments.
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dynamic tests at the reference temperature y0, as described prior to (43). We
assume linear thermal softening in (42) and choose

f�W� � 1ÿ bW, �51�

where b is the thermal softening coe�cient (Meyers, 1994) and W=yÿy0.
With (51) in force, the di�erential equation (48) for W becomes linear; for a

constant-rate process �_ep � const:�, it reduces to

@ �W
@ep
�ep, _ep� �mS�ep, _ep� �W�ep, _ep� � 1

c
�S�ep, _ep� ÿ �E

0�ep��, m � b=c: �52�

The solution, subject to the initial condition �W�0, _ep��0, is given by

�W�ep, _ep� � 1

c

�ep

0

�S�e, _ep� ÿ �E
0�e��eÿm

� ep

e S�g, _ep�dg de: �53�

From this, one immediately obtains a formula for the adiabatic stress s � �s�ep, _ep�

Fig. 5. Adiabatic stress response s � �s�ep, _ep� vs plastic strain e p for rate-sensitive a-titanium. Dotted

lines: experimental measurements at _ep � 1sÿ1 and 3 � 103 sÿ1. Solid line: theoretical prediction from

Eq. (54) for _ep � 1sÿ1 and 3 � 103 sÿ1, 105 sÿ1.
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by substitution of (53) into (49), using (51):

�s�ep, _ep� � S�ep, _ep�eÿm
� ep

0 S�e, _ep�de
"
1�m

�ep

0

�E
0�e�em

� e
0 S�g, _ep�dg de

#
: �54�

This relates the adiabatic stress �s�ep, _ep� to its isothermal analogue S�ep, _ep�; these
two di�er because of thermal softening due to the adiabatic temperature rise �W:
The latter is due to conversion of plastic work into heat, hence, it involves the
stored energy of cold work E

-
(e p).

For a rate-independent material with h�_ep� � 1 and S�ep, _ep� � s0�ep� in (42) and
(43), �y and �s reduce to rate-independent functions of plastic strain:

�W�ep� � 1

c

�ep

0

�s0�e� ÿ �E
0�e��eÿm

� ep

e s0�g�dg de, �s�ep� � s0�ep��1ÿ b �W�ep��: �55�

These are compared with experimental measurements for aluminum in Figs. 1 and
2.

We compare the predictions of (53) and (54) with experimental measurements of

Fig. 6. Stored energy of cold work E
-
(e p) vs plastic strain e p for rate-sensitive a-titanium; calculated

from Eq. (50) using the experimental data for W � �W�ep, _ep� and s � �s�ep, _ep� at _ep � 1sÿ1 and 3 � 103

sÿ1 from Figs. 4 and 5.
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the adiabatic response at di�erent strain rates for a-Ti. A single experiment at the
reference temperature y0=293 K and at a ®xed rate ep � 1 sÿ1, was used to obtain
E
-
(e p) (see above, Section 7.1, and Fig. 6). The function S�ep, _ep� � s0�ep�h�_ep� is

determined as follows: ®rst s0(e
p) is measured experimentally for a very low rate

_ep
0 � 10ÿ3 sÿ1 at y0. Then h�_ep� is assumed to be of the form

h�_ep� � 1� C log 10�_ep=_ep
0�:

The constant C is obtained by measuring the variation of the initial yield stress
s0�0�h�_ep� with strain rate through dynamic experiments and ®tting to the above
form.

Eqs. (53) and (54) were used to predict the adiabatic stress and temperature rise
at strain rates of _ep � 1 sÿ1, 3 � 103 sÿ1 and 105 sÿ1. The results are compared
with experimental measurements at the ®rst two of these rates in Fig. 4 for the
temperature, and Fig. 5 for the stress.

8. The fraction of plastic work rate converted into heating

Within the specialized constitutive framework developed in Sections 4±7, we re-
examine the form of the energy balance equation, paying particular attention to
the fraction b of plastic work rate _W

p � s_ep converted into inelastic heating Q
. p.

In a homogeneous adiabatic process, after neglecting thermoelastic heating, the
energy balance reduces to the simple form (47): c_y� _Q

p� b _W
p
: Here b � _Q

p
= _W

p

de®ned in (17) may also be expressed as

b � c_y
s_ep : �56�

This allows b to be extracted from experimental measurements of the temperature
and stress versus plastic strain during a Kolsky-bar test, without prior knowledge
of the stored energy of cold work.

At the same time, the constitutive model at our disposal allows a theoretical
prediction of b. Recalling (23), we have _Q

p � _W
p ÿ _�E: Then (17) and (36) furnish

b �
_Q

p

_W
p � 1ÿ

�E
0�x�_x
s_ep � 1ÿ

�E
0�x�
j s j � b̂�s, x�: �57�

As a result, b is determined by the constitutive law once the stored energy of cold
work E

-
(x ) is speci®ed. In (57) one may use (42) for the ¯ow stress and set s �

s0�ep�f�W�h�_ep�: This shows that for general thermoplastic processes b � ~b�ep, y, _ep�
depends on plastic strain, strain rate and temperature. Its form is determined by
the stored energy of cold work, but also the strain hardening, strain-rate
hardening and thermal softening characteristics of the material. For an adiabatic
homogeneous process at a constant rate, we may employ (54) for the adiabatic
stress �s�ep, _ep� in order to obtain an analytical expression for the dependence of b
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on strain and strain rate:

b � �b�ep, _ep� � 1ÿ
�E
0�ep�

�s�ep, _ep� : �58�

For rate-independent materials one uses (55) in place of (54), so that b � �b�ep�: In
(58) E

-
(e p) is obtained from an experiment at a single strain rate, as described in

Section 7.1. In Fig. 7, predicted values of b from (58) for aluminum are compared
with experimentally obtained values from (56) for strain rates _ep � 103 sÿ1 and
3 � 103 sÿ1. As expected, experimental values of b are essentially rate-insensitive.
The model captures well the strong dependence of b on strain; it is found to
initially decrease, reach a minimum of less than 0.3 at e p 1 0.07, then increase
with strain.

For a-titanium, an analogous comparison is shown in Fig. 8. The dependence of

Fig. 7. Fraction b of plastic work rate converted into heating vs plastic strain e p for rate-insensitive

2024-T351 aluminum. Dashed and dotted lines: experimentally obtained values from Eq. (56) at strain

rates _ep � 103 sÿ1 and 3 � 103 sÿ1; see also Hodowany et al. (1998). Solid line: theoretical prediction

b � �b�ep� from Eq. (58), using E
-
(e p) from Fig. 3 and s � �s�ep� from Eq. (55) (solid line in Fig. 2).
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b on strain is somewhat less dramatic than for aluminum. However, the rate
dependence of the material is prominent in both the measured and the predicted
results. For _ep � 1 sÿ1, b oscillates around an average value of 0.65, while for _ep �
3� 103 sÿ1 its average is roughly 0.8. This increase is largely due to strain-rate
hardening.

These results indicate that aluminum stores a higher fraction of plastic work
than a-titanium. In numerical simulations of dynamic penetration of aluminum
plates, Camacho and Ortiz (1997) achieved better agreement with experimental
results when b was chosen to be zero than with the choice b=0.9.

8.1. Concluding remarks

One of the points hopefully clari®ed by the present study is that b is a history-
dependent quantity. The analytical expression obtained when (54) is combined

Fig. 8. Fraction b of plastic work rate converted into heating vs plastic strain e p for rate-sensitive a-
titanium. Dotted lines: experimentally obtained values from Eq. (56) at strain rates _ep � 1 sÿ1 and

3 � 103 sÿ1; see also Hodowany et al. (1998). Solid line: theoretical prediction b � �b�ep, _ep� from Eq.

(58), using E
-
(e p) from Fig. 6 and s � �s�ep, _ep� from Eq. (54) (solid line in Fig. 5).
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with (58) is valid only for adiabatic processes at a constant strain rate. For more
general processes, it is impossible to express b as a function only of strain and
strain rate: the temperature, which a�ects the stress [hence, b in (57)] through
thermal softening, enters in a complex fashion through the solution of the energy
equation (32); this is a partial di�erential equation in the presence of heat
conduction.

Within the con®nes of the present constitutive framework, the assumption that
b is constant is inconsistent with the rate independence of the stored energy of
cold work, which is a fundamental consequence of thermodynamics. It would
seem that the only justi®cation for a priori assumptions on b is a lack of
information on the stored energy of cold work.

Instead, a consistent constitutive model for thermoplasticity must include an
appropriate expression for the stored energy of cold work; we have demonstrated
a method for the experimental determination of this function. Its speci®cation,
together with the usual evolution laws and the energy balance equation, allows the
complete prediction of the material response to arbitrary thermomechanical
processes.
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